6 research outputs found

    Algorithm Portfolios for Noisy Optimization

    Get PDF
    Noisy optimization is the optimization of objective functions corrupted by noise. A portfolio of solvers is a set of solvers equipped with an algorithm selection tool for distributing the computational power among them. Portfolios are widely and successfully used in combinatorial optimization. In this work, we study portfolios of noisy optimization solvers. We obtain mathematically proved performance (in the sense that the portfolio performs nearly as well as the best of its solvers) by an ad hoc portfolio algorithm dedicated to noisy optimization. A somehow surprising result is that it is better to compare solvers with some lag, i.e., propose the current recommendation of best solver based on their performance earlier in the run. An additional finding is a principled method for distributing the computational power among solvers in the portfolio.Comment: in Annals of Mathematics and Artificial Intelligence, Springer Verlag, 201

    Leveraging Static Analysis for Bug Repair

    Full text link
    We propose a method combining machine learning with a static analysis tool (i.e. Infer) to automatically repair source code. Machine Learning methods perform well for producing idiomatic source code. However, their output is sometimes difficult to trust as language models can output incorrect code with high confidence. Static analysis tools are trustable, but also less flexible and produce non-idiomatic code. In this paper, we propose to fix resource leak bugs in IR space, and to use a sequence-to-sequence model to propose fix in source code space. We also study several decoding strategies, and use Infer to filter the output of the model. On a dataset of CodeNet submissions with potential resource leak bugs, our method is able to find a function with the same semantics that does not raise a warning with around 97% precision and 66% recall.Comment: 13 pages. DL4C 202

    Augmented Language Models: a Survey

    Full text link
    This survey reviews works in which language models (LMs) are augmented with reasoning skills and the ability to use tools. The former is defined as decomposing a potentially complex task into simpler subtasks while the latter consists in calling external modules such as a code interpreter. LMs can leverage these augmentations separately or in combination via heuristics, or learn to do so from demonstrations. While adhering to a standard missing tokens prediction objective, such augmented LMs can use various, possibly non-parametric external modules to expand their context processing ability, thus departing from the pure language modeling paradigm. We therefore refer to them as Augmented Language Models (ALMs). The missing token objective allows ALMs to learn to reason, use tools, and even act, while still performing standard natural language tasks and even outperforming most regular LMs on several benchmarks. In this work, after reviewing current advance in ALMs, we conclude that this new research direction has the potential to address common limitations of traditional LMs such as interpretability, consistency, and scalability issues

    Code Llama: Open Foundation Models for Code

    Full text link
    We release Code Llama, a family of large language models for code based on Llama 2 providing state-of-the-art performance among open models, infilling capabilities, support for large input contexts, and zero-shot instruction following ability for programming tasks. We provide multiple flavors to cover a wide range of applications: foundation models (Code Llama), Python specializations (Code Llama - Python), and instruction-following models (Code Llama - Instruct) with 7B, 13B and 34B parameters each. All models are trained on sequences of 16k tokens and show improvements on inputs with up to 100k tokens. 7B and 13B Code Llama and Code Llama - Instruct variants support infilling based on surrounding content. Code Llama reaches state-of-the-art performance among open models on several code benchmarks, with scores of up to 53% and 55% on HumanEval and MBPP, respectively. Notably, Code Llama - Python 7B outperforms Llama 2 70B on HumanEval and MBPP, and all our models outperform every other publicly available model on MultiPL-E. We release Code Llama under a permissive license that allows for both research and commercial use
    corecore